1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Chain Rule of Differentiation
Prove that, ...
Question
Prove that,
√
1
+
sin
A
1
−
sin
A
=
sec
A
+
tan
A
Or
If
tan
θ
+
cot
θ
=
2
, find the value of
tan
3
θ
+
7
cot
3
θ
.
Open in App
Solution
L
.
H
.
S
=
√
1
+
sin
A
1
−
sin
A
=
√
1
+
sin
A
1
−
sin
A
×
1
+
sin
A
1
+
sin
A
=
√
(
1
+
sin
A
)
2
1
−
sin
2
A
=
√
(
1
+
sin
A
)
2
cos
2
A
=
1
+
sin
A
cos
A
=
1
+
sin
A
cos
A
=
1
cos
A
+
sin
A
cos
A
=
sec
A
+
tan
A
=
R
.
H
.
S
→
H
e
n
c
e
P
r
o
v
e
d
Suggest Corrections
0
Similar questions
Q.
Prove that
√
(
1
−
sin
A
1
+
sin
A
)
=
sec
A
−
tan
A
.
Q.
Prove that :
√
1
+
sin
A
1
−
sin
A
=
(
sec
A
+
tan
A
)
Q.
Prove that
1
−
s
i
n
A
1
+
s
i
n
A
=
(
s
e
c
A
−
t
a
n
A
)
2
Q.
Prove that
1
+
sin
A
−
cos
A
c
o
s
A
+
sin
A
−
1
=
tan
A
2
.
Q.
Prove the following trigonometric identities.
(i)
cot
θ
-
tan
θ
=
2
cos
2
θ
-
1
sin
θ
cos
θ
(ii)
tan
θ
-
cot
θ
=
2
sin
2
θ
-
1
sin
θ
cos
θ
(iii)
sin
A
-
2
sin
3
A
2
cos
3
A
-
cos
A
=
tan
A