wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that secθ1secθ+1+secθ+1secθ1=2cosecθ

Open in App
Solution

L.H.S=secθ1secθ+1+secθ+1secθ1

$=\sqrt{\dfrac{\sec{\theta}-1}{\sec{\theta}+1}}\times\sqrt{\dfrac{\sec{\theta}-1}{\sec{\theta}-1}} +\sqrt{\dfrac{\sec{\theta}+1}{\sec{\theta}-1}}\times
\sqrt{\dfrac{\sec{\theta}+1}{\sec{\theta}+1}}$

=secθ1sec2θ1+secθ+1sec2θ1

=secθ1tan2θ+secθ+1tan2θ

=secθ1tanθ+secθ+1tanθ
=secθ1+secθ+1tanθ

=2secθtanθ

=2secθcotθ

=2×1cosθ×cosθsinθ

=2sinθ

=2cscθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon