Prove that √1+sinx1−sinx=tan(π4+x2)
LHS=√1+sin x√1−sin x ×√1+sin x√1+sin x ×=(1+sin x)cosx=1−cos(π2+x)sinπ2+x
=2sin2(π4+x2)2sin(x4+x2)cos(π4+x2)=tan(π4+x2) = RHS.
Prove that cosx(1−sin x)=tan (π4+x2)