1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
Prove that ...
Question
Prove that
√
sec
2
θ
+
c
o
s
e
c
2
θ
=
tan
θ
+
cot
θ
.
Open in App
Solution
We use the following trigonometric identities:
sec
2
θ
=
tan
2
θ
+
1
and
c
o
s
e
c
2
θ
=
cot
2
θ
+
1
On adding these, we get:
sec
2
θ
+
c
o
s
e
c
2
θ
=
tan
2
θ
+
cot
2
θ
+
2
⇒
sec
2
θ
+
c
o
s
e
c
2
θ
=
tan
2
θ
+
cot
2
θ
+
2
tan
θ
cot
θ
=
(
tan
θ
+
cot
θ
)
2
⇒
√
sec
2
θ
+
c
o
s
e
c
2
θ
=
tan
θ
+
cot
θ
Hence Proved.
Suggest Corrections
3
Similar questions
Q.
Question 2
Prove that:
√
s
e
c
2
θ
+
c
o
s
e
c
2
θ
=
t
a
n
θ
+
c
o
t
θ
Q.
Prove the following identity.
√
sec
2
θ
+
c
o
s
e
c
2
θ
=
tan
θ
+
cot
θ
Q.
Prove the following :
(viii)
s
e
c
2
θ
+
cos
e
c
2
θ
=
tan
θ
+
c
o
t
θ
Q.
If
θ
is acute angle, and
t
a
n
θ
=
1
√
7
, then
c
o
s
e
c
2
θ
−
s
e
c
2
θ
c
o
s
e
c
2
θ
+
s
e
c
2
θ
=
Q.
If tan θ =
1
7
then prove that
cosec
2
θ
+
sec
2
θ
cosec
2
θ
-
sec
2
θ
=
4
3
.