∫√x2+a2dx
x=atanθ,tanθ=xa
dx=asec2θαθ
∫√a2(1+tan2θ).asec2θαθ
∫asecθ.asec2θαθ
=a2∫secθαθ
=a2[secθtanθ2+12∫secθαθ] (Reduction formula)
=a22secθtanθ+a22log|secθ+tanθ|
=a22√x2+a2a.xa+a22log∣∣∣√x2+a2a+xa∣∣∣
=x2√x2+a2+a22log∣∣x+√x2+a2∣∣+c