wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sum of intercepts of the tangent at any point to the curve represented by x=3cos4θ and y=3sin4θ on the co-ordinate axis is constant.

Open in App
Solution

We have,

x=3cos4θ

y=3sin4θ


Now,

dydx=dydθdxdθ

So,

dydθ=12sin3θ×cosθ

dxdθ=12cos3θ×(sinθ)


Now,

dydx=dydθdxdθ=12sin3θ×cosθ12cos3θ×(sinθ)

dydx=sin2θcos2θ

dydx=tan2θ


Equation of tangents

yy1=dydx(xx1)

y3sin4θ=sin2θcos2θ(x3cos4θ)

ycos2θ3sin4θcos2θ=xsin2θ+3cos4θsin2θ

xsin2θ+ycos2θ=3cos4θsin2θ+3sin4θcos2θ

xsin2θ+ycos2θ=3cos2θsin2θ(cos2θ+sin2θ)

xsin2θ+ycos2θ=3cos2θsin2θ×1

xsin2θ+ycos2θ=3cos2θsin2θ

xsin2θ+ycos2θ3cos2θsin2θ=1

xsin2θ3cos2θsin2θ+ycos2θ3cos2θsin2θ=1

x3cos2θ+y3sin2θ=1


Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Characteristics of Sound Waves
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon