Prove That tan-113+tan-115+tan-117+tan-118=π4
Solve by applying trigonometric formulas:
We have tan-113+tan-115+tan-117+tan-118=π8
Taking LHS tan-113+tan-115+tan-117+tan-118
As we know that tan-1x+tan-1y=tan-1x+y1-xy
So, tan-113+181-13×18+tan-115+171-15×17
=tan-111242324+tan-112353435
=tan-11123+tan-1617
Again by using tan-1x+tan-1y=tan-1x+y1-xy
Then, tan-11123+6171-1123×617
=tan-1138+187391391-65391=tan-1325391325391=tan-1(1)=tan-1tanπ4=π4
Hence, proved.
From the following place value table, write the decimal number:-
From the given place value table, write the decimal number.
Find the value of x so that; (i) (34)2x+1=((34)3)3(ii) (25)3×(25)6=(25)3x(iii) (−15)20÷(−15)15=(−15)5x(iv) 116×(12)2=(12)3(x−2)