wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan112+tan115+tan118=π4

Open in App
Solution

We know that, tan1x+tan1y=tan1(x+y1xy)
Replace xlog1/5 and ylog1/7
tan11/5+tan11/7=tan11/5+1/711/5×1/7=tan1(6/17)
Similarly replace 2log1/3 and y log1/8
tan11/3+tan11/8tan11/3+1/211/3×1/8=tan1(11/23)
LHStan115+tan117+tan113+tan118
=(tan115+tan117)+tan1(13+tan18)
=tan1(6/17)+tan1(11/23)
=tan1[6/17+11/2316/17×11/13]
=tan1138+187/39139166/391
=tan1325391×391325=tan11
=tan1
=tan1(tanπ4)[tan45=7tanπ/4=7]
=π4
=RHS.

1231701_1502146_ans_fdc72bc325104315912af509c1d18765.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon