We know that, tan−1x+tan−1y=tan−1(x+y1−xy)
Replace xlog1/5 and ylog1/7
tan−11/5+tan−11/7=tan−11/5+1/71−1/5×1/7=tan−1(6/17)
Similarly replace 2log1/3 and y log1/8
tan−11/3+tan−11/8−tan−11/3+1/21−1/3×1/8=tan−1(11/23)
LHS⇒tan−115+tan−117+tan−113+tan−118
=(tan−115+tan−117)+tan−1(13+tan−18)
=tan−1(6/17)+tan−1(11/23)
=tan−1[6/17+11/231−6/17×11/13]
=tan−1138+187/391391−66/391
=tan−1325391×391325=tan−11
=tan−1
=tan−1(tanπ4)[tan45=7tanπ/4=7]
=π4
=RHS.