wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan1(cosx1+sinx)=π4x2,xϵ(π2,π2)

Open in App
Solution

tan1(cosx1+sinx)=tan1⎜ ⎜cos2x2sin2x2cos2x2+sin2x2+2.cosx2.sinx2⎟ ⎟
=tan1⎢ ⎢ ⎢ ⎢ ⎢(cosx2sinx2)(cosx2+sinx2)(cosx2+sinx2)2⎥ ⎥ ⎥ ⎥ ⎥
=tan1⎜ ⎜cosx2sinx2cosx2+sinx2⎟ ⎟=tan1⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜cosx2cosx2sinx2cosx2cosx2cosx2+sinx2cosx2⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
=tan1⎜ ⎜1tanx21+tanx2⎟ ⎟=tan1⎜ ⎜tanπ4tanx21+tanπ2tanx2⎟ ⎟
=tan1[tan(π4x2)]
=π4x2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon