wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan1[1+x+1x1+x1x]=π4+12cos1x,0<x<1

Open in App
Solution

For this we have to put x=cos2θ

From LHS we get,

tan1(1+x1x1+x+1x)

Put x=cos2θ

tan1(1+cos2θ1cos2θ1+cos2θ+1cos2θ).......1

Since we know that

cos2θ=2cos2θ1 or 12sin2θ

Put this value in equation 1 then we get

=tan1(2cos2θ2sin2θ2cos2θ2sin2θ)

tan1(2cosθ2sinθ2cosθ+2sinθ)

tan1(22)(cosθsinθcosθ+sinθ)

=(cosθsinθcosθ+sinθ)

dividing by cosθ

tan1(cosθcosθsinθcosθcosθcosθsinθcosθ)

tan1(1tanθ1+tanθ)

tan1(1tanθ1+1.tanθ)

tan1(1tanθ1+tanπ4tanθ) [since tanπ4=1]

By using tan(x+y)=tanxtany1+tanx.tany
Thus, Put this value

x=π4 and y=θ

tan1tan(π4θ)

=π4θ......2
\since we know that

x=cos2θ

cos1=2θ

12cos1x=θ

Put this value in equation 2 then we get

=π412cos1x

Hence RHS proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon