For this we have to put x=cos2θ
From LHS we get,
tan−1(√1+x−√1−x√1+x+√1−x)
Put x=cos2θ
tan−1(√1+cos2θ−√1−cos2θ√1+cos2θ+√1−cos2θ).......1
Since we know that
cos2θ=2cos2θ−1 or 1−2sin2θ
Put this value in equation 1 then we get
=tan−1(√2cos2θ−√2sin2θ√2cos2θ−√2sin2θ)
tan−1(√2cosθ−√2sinθ√2cosθ+√2sinθ)
tan−1(√2√2)(cosθ−sinθcosθ+sinθ)
=(cosθ−sinθcosθ+sinθ)
dividing by cosθ
tan−1(cosθcosθ−sinθcosθcosθcosθ−sinθcosθ)
tan−1(1−tanθ1+tanθ)
tan−1(1−tanθ1+1.tanθ)
tan−1(1−tanθ1+tanπ4tanθ) [since tanπ4=1]
By using tan(x+y)=tanx−tany1+tanx.tany
Thus, Put this value
x=π4 and y=θ
tan−1tan(π4−θ)
=π4−θ......2
\since we know that
x=cos2θ
cos−1=2θ
12cos−1x=θ
Put this value in equation 2 then we get
=π4−12cos−1x
Hence RHS proved.