wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
tan1[1+x1x1+x+1x]=π412cos1x,12x1

Open in App
Solution

Put x=cosθ in the LHS of tan1[1+x1x1+x+1x]=π412cos1x.

tan1[1+cosθ1cosθ1+cosθ+1cosθ]

=tan1⎢ ⎢ ⎢ ⎢2cos2θ22sin2θ22cos2θ2+2sin2θ2⎥ ⎥ ⎥ ⎥

=tan1⎢ ⎢ ⎢2cosθ22sinθ22cosθ2+2sinθ2⎥ ⎥ ⎥

=tan1⎢ ⎢ ⎢ ⎢2(cosθ2sinθ2)2(cosθ2+sinθ2)⎥ ⎥ ⎥ ⎥

=tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎜ ⎜ ⎜cosθ2cosθ2sinθ2cosθ2⎟ ⎟ ⎟⎜ ⎜ ⎜cosθ2cosθ2+sinθ2cosθ2⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

=tan1⎢ ⎢ ⎢ ⎢(1tanθ2)(1+tanθ2)⎥ ⎥ ⎥ ⎥

=tan1⎢ ⎢ ⎢ ⎢tanπ4tanθ21+(tanπ4)(tanθ2)⎥ ⎥ ⎥ ⎥

=tan1[tan(π4θ2)]

=π4θ2

As x=cosθ, then θ=cos1x.

=π412cos1x

=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon