wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: tan1[1+x1x1+x+1x]=π412cos1x,12x1.

Open in App
Solution

Take LHS,
Put x=cos2θ

tan1[1+cot2θ1cot2θ1+cot2θ+1cot2θ]

=tan1[1+2cos2θ111+2sin2θ1+2cos2θ1+11+2sin2θ]

tan1[cosθsinθcosθ+sinθ]

=tan1[1tanθ1+tanθ]

=tan1⎢ ⎢tan(π4)tanθ1+tan(π4).tanθ⎥ ⎥

=tan1[tan(π4θ)]

π4θ asx=cos2θso,θ=cos12

=π412cos1x = RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon