LHS:tan−1(√1+cos x+√1−cos x√1+cos x−√1−cos x)=tan−1⎛⎜⎝√2cos2x2+√2sin2x2√2cos2x2−√2sin2x2⎞⎟⎠
⇒=tan−1(∣∣cosx2∣∣+∣∣sinx2∣∣∣∣cosx2∣∣−∣∣sinx2∣∣)=tan−1(−cosx2+sinx2−cosx2−sinx2) {∵π<x<3π2⇒π2<x2<3π4∴x2ϵ II quad
⇒=tan−1(1−tanx21+tanx2)=tan−1tan(π4−x2)=π4−x2=RHS.