wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan1(1+cosx+1cosx1+cosx1cosx)=π4x2 if π<x<3π2

Open in App
Solution

tan1(1+cosx+1cosx1+cosx1cosx)
=tan1(1+cosx+1cosx)2(1+cosx)2(1cosx)2
=tan1(1+cosx+1cosx+21cos2x1+cosx1+cosx)
=tan1(2+21sin2x2cosx)
=tan1(1+sinxcosx)
=tan1⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜1+2tanx21+tan2x21tan2x21+tan2x2⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
=tan1⎜ ⎜ ⎜ ⎜ ⎜(1+tanx2)2(1+tanx2)(1tanx2)2(1+tanx2)⎟ ⎟ ⎟ ⎟ ⎟
=tan1⎜ ⎜1+tanx21tanx2⎟ ⎟
=tan1⎜ ⎜tanπ4+tanx21tanx4tanx2⎟ ⎟
As π<x<3x2
=tan1(tan(π4x2))
=π4x2
Hence, the answer is π4x2.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon