wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan1(1+x2+1x21+x21x2)=π4+12cos1 x2.

Open in App
Solution

We have,

tan1(1+x2+1x21+x21x2)=π4+12cos1 x2

LHS=tan1(1+x2+1x21+x21x2) (i)[let x2=cos2θ=(cos2 θsin2 θ)=12sin2 θ=2cos2 θ1]

cos1 x2=2θ θ =12 cos1 x2 1+x2=1+cos2 θ=1+2cos2 θ1=2 cos θand 1x2=1cos2θ=11+2sin2 θ=2 sin θ LHS=tan1(2 cos θ+2 sin θ2 cos θ2 sin θ)=tan1(cos θ+sin θcos θsin θ)=tan1(1+tan θ1tan θ)=tan1(tanπ4+tan θ1tanπ4tan θ)=tan1[tan(π4+θ)] [ tan(x+y)=tan x+tan y1tan xtan y]=π4+θ=π4+12cos1 x2=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon