Prove that tan−1(√1+x2+√1−x2√1+x2−√1−x2)=π4+12cos−1 x2.
We have,
tan−1(√1+x2+√1−x2√1+x2−√1−x2)=π4+12cos−1 x2
∴ LHS=tan−1(√1+x2+√1−x2√1+x2−√1−x2) ⋯(i)[let x2=cos2θ=(cos2 θ−sin2 θ)=1−2sin2 θ=2cos2 θ−1]
⇒ cos−1 x2=2θ ⇒ θ =12 cos−1 x2∴ √1+x2=√1+cos2 θ=√1+2cos2 θ−1=√2 cos θand √1−x2=√1−cos2θ=√1−1+2sin2 θ=√2 sin θ∴ LHS=tan−1(√2 cos θ+√2 sin θ√2 cos θ−√2 sin θ)=tan−1(cos θ+sin θcos θ−sin θ)=tan−1(1+tan θ1−tan θ)=tan−1(tanπ4+tan θ1−tanπ4tan θ)=tan−1[tan(π4+θ)] [∵ tan(x+y)=tan x+tan y1−tan x−tan y]=π4+θ=π4+12cos−1 x2=RHS Hence proved.