Prove that: tan−1(√1+x−√1−x√1+x+√1−x)=π4−12cos−1x;−1√2≤x≤1.
OR If tan−1(x−2x−4)+tan−1(x+2x+4)=π4, find the value of x.
LHS: Let Y=tan−1(√1+x−√1−x√1+x+√1−x)
Put x=cos2θ⇒θ=12cos−1x …(i)
Let Y=tan−1(√1+cos2θ−√1−cos2θ√1+cos2θ+√1−cos2θ)=tan−1(√2cosθ−√2sinθ√2cosθ+√2sinθ)
=tan−1(cosθ−sinθcosθ+sinθ)=tan−1(1−tanθ1+tanθ)=tan−1(tanπ4−tanθ1+tanπ4−tanθ)
=tan−1tan(π4−θ)=π4−θ
=π2−12cos−1x [By (i)]
=RHS
OR
The given equation is tan−1(x−2x−4)+tan−1(x+2x+4)=π4
⇒tan−1(x−2x−4)=tan−1(x+2x+4)
⇒tan−1(x−2x−4)=tan−1(1−x+2x+41+1×x+2x+4)=tan−1(22(x+3))
⇒x−2x−4=1x+3 ⇒x3+x−6=x−4
⇒x2=2 ∴x=±√2.