wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :-
tan1x=12cos1(1x1+x),x[0,1]

Open in App
Solution

Taking R.H.S
12cos1(1x1+x)

putting x.tan2θ

=12cos1(1tan2θ1+tan2θ)

=12(1sin2θcos2θ1+sin2θcos2θ)

=12cos1(cos2θsin2θcos2θcos2θ+sin2θcos2θ)

=12cos1(cos2θsin2θcos2θ×cos2θsin2θ+cos2θ)

=12.cos1(cos2θ.sin2θsin2θ+cos2θ)

=12.cos1(cos2θsin2θ1) [ using sin2θ+cos2θ=1]

12.cos1(cos2θ) (using cos2θcos2θsin2θ)

=12.θ

=θ

we assume that

x=tan2θ

x=tanθ

tan1x=θ

Hence,
12.cos1(1x1+x)=0

12.cos1(1x1+x)=tan1x

L.H.S = R.H.S
Hence proved.

1211829_1428536_ans_851ae857144040d580db1c35281884dc.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon