wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan1x+tan1(1x)=π2 for x > 0.

Open in App
Solution

cotθ1tanθ
also
cotθ=tan(π2θ)
Explanation:
let y=tan1xx=tany
x=tany1x=1tany=coty
1x=coty=tan(π2y)
π2 y=tan1(1x)
but y=tan1x
so π2tan1(1x)+tan1x

1172322_359795_ans_e75b14adf65848d5a574b915f4338840.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon