1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Other
Quantitative Aptitude
A.M Greater than or Equal to G.M
Prove that ...
Question
Prove that
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
(
x
+
y
)
(
1
−
x
y
)
when xy<1.
Open in App
Solution
→
Let
α
=
t
a
n
−
1
x
,
β
=
t
a
n
−
1
y
As
tan
(
α
+
β
)
=
tan
α
+
tan
β
1
−
tan
α
tan
β
⇒
tan
(
α
+
β
)
=
x
+
y
1
−
x
y
⇒
α
+
β
=
tan
−
1
(
x
+
y
1
−
x
y
)
=
t
a
n
−
1
x
+
t
a
n
−
1
y
Suggest Corrections
0
Similar questions
Q.
Inverse circular functions,Principal values of
sin
−
1
x
,
cos
−
1
x
,
tan
−
1
x
.
tan
−
1
x
+
tan
−
1
y
=
tan
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
tan
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Prove that
tan
−
1
1
−
x
1
+
x
tan
−
1
1
−
y
1
+
y
=
sin
−
1
y
−
x
√
1
+
x
2
√
1
+
y
2
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
If
u
=
c
o
t
−
1
[
√
c
o
s
2
θ
]
−
t
a
n
−
1
[
√
c
o
s
2
θ
]
, then prove that
s
i
n
u
=
t
a
n
2
θ
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
Prove that
t
a
n
(
π
4
+
1
2
c
o
s
−
1
a
b
)
+
t
a
n
(
π
4
−
1
2
c
o
s
−
1
a
b
)
=
2
b
a
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
c
o
s
−
1
p
+
c
o
s
−
1
q
+
c
o
s
−
1
r
=
π
, then prove that
p
2
+
q
2
+
r
2
+
2
p
q
r
=
1
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
, then prove that
x
4
+
y
4
+
z
4
+
4
x
2
y
2
z
2
=
2
(
x
2
y
2
+
y
2
z
2
+
z
2
x
2
)
(c) If
t
a
n
−
1
x
+
t
a
n
−
1
y
+
t
a
n
−
1
z
=
π
or
π
/
2
show that
x
+
y
+
z
=
x
y
z
or
x
y
+
y
z
+
z
x
=
1
.
Q.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
=
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
t
a
n
−
1
⎷
{
x
(
x
+
y
+
z
)
y
z
}
+
t
a
n
−
1
⎷
{
y
(
x
+
y
+
z
)
z
x
}
+
t
a
n
−
1
⎷
{
z
(
x
+
y
+
z
)
x
y
}
=
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Inequations I
QUANTITATIVE APTITUDE
Watch in App
Explore more
A.M Greater than or Equal to G.M
Other Quantitative Aptitude
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app