Let f(x)=tan−1(x)−x
⇒f′(x)=11+x2−1=1−1−x21+x2
=−x21+x2=<0 for all x>0.
∴f(x) is strictly decreasing for all x>0.
∴f(x)<f(0) for all x>0.
⇒tan−1x−x<tan−1(0)−0 for all x>0
⇒tan−1(x)−x<0−0 for all x>0
⇒tan−1(x)−x<0 for all x>0
⇒tan−1(x)<x for all x>0
Hence, proved.