1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative
Prove that:ta...
Question
Prove that:
tan
-
1
2
a
b
a
2
-
b
2
+
tan
-
1
2
x
y
x
2
-
y
2
=
tan
-
1
2
αβ
α
2
-
β
2
,
where α = ax − by and β = ay + bx.
Open in App
Solution
We know
tan
-
1
x
+
tan
-
1
y
=
tan
-
1
x
+
y
1
-
x
y
,
x
y
>
1
∴
tan
-
1
2
a
b
a
2
-
b
2
+
tan
-
1
2
x
y
x
2
-
y
2
=
tan
-
1
2
a
b
a
2
-
b
2
+
2
x
y
x
2
-
y
2
1
-
2
a
b
a
2
-
b
2
2
x
y
x
2
-
y
2
=
tan
-
1
2
a
b
x
2
-
a
b
y
2
+
x
y
a
2
-
x
y
b
2
a
2
-
b
2
x
2
-
y
2
a
2
x
2
-
a
2
y
2
-
x
2
b
2
+
y
2
b
2
-
4
a
b
x
y
a
2
-
b
2
x
2
-
y
2
=
tan
-
1
2
a
b
x
2
-
a
b
y
2
+
x
y
a
2
-
x
y
b
2
a
2
x
2
-
a
2
y
2
-
x
2
b
2
+
y
2
b
2
-
2
a
b
x
y
-
2
a
b
x
y
=
tan
-
1
2
a
x
-
b
y
a
y
+
b
x
a
x
-
b
y
2
-
a
y
+
b
x
2
=
tan
-
1
2
α
β
α
2
-
β
2
∵
α
=
a
x
-
b
y
and
β
=
a
y
+
b
x
Suggest Corrections
0
Similar questions
Q.
For any a, b, x, y > 0, prove that:
2
3
tan
-
1
3
a
b
2
-
a
3
b
3
-
3
a
2
b
+
2
3
tan
-
1
3
x
y
2
-
x
3
y
3
-
3
x
2
y
=
tan
-
1
2
αβ
α
2
-
β
2
where α = − ax + by, β = bx + ay
Q.
By using
L
M
V
T
, prove that
β
−
α
1
+
β
2
<
tan
−
1
β
−
tan
−
1
α
<
β
−
α
1
+
α
2
,
β
−
α
<
0
.
Q.
If
tan
(
α
−
β
)
tan
α
+
sin
2
γ
sin
2
α
=
1
,
then prove that tan
γ
is geometric mean of tan
α
and tan
β
.
i.e., than
α
tan
β
=
tan
2
γ
.
Q.
Prove that the length of the common chord of the circles
x
2
+
y
2
+
a
x
+
b
y
+
c
=
0
and
x
2
+
y
2
+
b
x
+
a
y
+
c
=
0
is
√
1
2
(
a
+
b
)
2
−
4
c
.
Q.
If ax+by=3, bx-ay=4 and
x
2
+
y
2
=
1
then the value of
a
2
+
b
2
is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Derivative of Simple Functions
MATHEMATICS
Watch in App
Explore more
Derivative
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app