wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : tan2Atan2B=sin2Asin2Bcos2A.cos2B

Open in App
Solution

we know, cos2A=2cos2A1=12sin2A
cos2A=1+cos2A2
sin2A=1cos2A2
tan2A=sin2Acos2A=1cos2A1+cos2A
Similarly, tan2B=sin2Bcos2B=1cos2B1+cos2B
tan2Atan2B=1cos2A1+cos2A1cos2B1+cos2B
add and substract 1
tan2Atan2B=1cos2A1+cos2A+11cos2B1+cos2B1
=(1cos2A1+cos2A+1)(1cos2B1+cos2B+1)
=(21+cos2A)(21+cos2B)=(2(cos2Bcos2A)(1+cos2B)(1+cos2A))
cos2A=12sin2A,cos2B=12sin2B
tan2Atan2B=(2(cos2Bcos2A)(1+cos2B)(1+cos2A))=(4(sin2Asin2B)(1+cos2B)(1+cos2A))
cos2A+1=2cos2A,cos2B+1=2cos2B
tan2Atan2B=(4(sin2Asin2B)(1+cos2B)(1+cos2A))=(4(sin2Asin2B)4cos2Acos2B)=(sin2Asin2Bcos2Acos2B)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon