cos2A=1+cos2A2
sin2A=1−cos2A2
tan2A=sin2Acos2A=1−cos2A1+cos2A
Similarly, tan2B=sin2Bcos2B=1−cos2B1+cos2B
tan2A−tan2B=1−cos2A1+cos2A−1−cos2B1+cos2B
add and substract 1
tan2A−tan2B=1−cos2A1+cos2A+1−1−cos2B1+cos2B−1
=(1−cos2A1+cos2A+1)−(1−cos2B1+cos2B+1)
=(21+cos2A)−(21+cos2B)=(2(cos2B−cos2A)(1+cos2B)(1+cos2A))
cos2A=1−2sin2A,cos2B=1−2sin2B
tan2A−tan2B=(2(cos2B−cos2A)(1+cos2B)(1+cos2A))=(4(sin2A−sin2B)(1+cos2B)(1+cos2A))
cos2A+1=2cos2A,cos2B+1=2cos2B
tan2A−tan2B=(4(sin2A−sin2B)(1+cos2B)(1+cos2A))=(4(sin2A−sin2B)4cos2Acos2B)=(sin2A−sin2Bcos2Acos2B)