wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
tan2αtan2β=sin(α+β)sin(αβ)cos2αcos2β

Open in App
Solution

Simplify the LHS of tan2αtan2β=sin(α+β)sin(αβ)cos2αcos2β

tan2αtan2β=(tanαtanβ)(tanα+tanβ)

=(sinαcosαsinβcosβ)(sinαcosα+sinβcosβ)

=(sinαcosβcosαsinβcosαcosβ)(sinαcosβ+cosαsinβcosαcosβ)

=(sin(αβ)cosαcosβ)(sin(α+β)cosαcosβ)

=sin(αβ)sin(α+β)cos2αcos2β

=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon