1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of Trigonometric Equation
Prove that: ...
Question
Prove that:
tan
2
θ
−
sin
2
θ
=
tan
2
θ
.
sin
2
θ
.
Open in App
Solution
Now,
tan
2
θ
−
sin
2
θ
=
sin
2
θ
cos
2
θ
−
sin
2
θ
=
(
sin
2
θ
)
[
1
−
cos
2
θ
cos
2
θ
]
=
sin
2
θ
.
sin
2
θ
cos
2
θ
[
∵
1
−
cos
2
θ
=
sin
2
=
θ
]
=
(
sin
2
θ
.
tan
2
θ
)
Suggest Corrections
0
Similar questions
Q.
Prove that
(
s
e
c
θ
+
c
o
s
θ
)
(
s
e
c
θ
−
c
o
s
θ
)
=
t
a
n
2
θ
+
s
i
n
2
θ
Q.
If
cos
2
θ
−
sin
2
θ
=
tan
2
α
then prove that
cos
2
α
−
sin
2
α
=
tan
2
θ
.
Q.
Prove the following identity
tan
2
θ
tan
2
θ
−
1
+
c
o
s
e
c
2
θ
sec
2
θ
−
c
o
s
e
c
2
θ
=
1
sin
2
θ
−
cos
2
θ
Q.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan
2
θ + sin
2
θ