Prove that: tan3xtan2xtanx=tan3x−tan2x−tanx
Solve for the required proof
Given that tan3xtan2xtanx=tan3x−tan2x−tanx
Consider tan3x=tan2x+x
The formula to find the tangent of summation of two angles is
tanA+B=tanA+tanB1-tanAtanB
Substituting A=2x,B=x,
⇒ tan2x+x=tan2x+tanx1-tan2xtanx
⇒ tan3x1-tan2xtanx=tan2x+tanx
⇒tan3x-tan3xtan2xtanx=tan2x+tanx
⇒ tan3x-tan2x-tanx=tan3xtan2xtanx
Hence, the given identity is proved.
If, prove that