tan4x=4tanx(1−tan2x)1−6tan2x+tan4xL.H.S
tan4x=tan(2x+2x)
=2tan2x1−tan22x=2(2tanx1−tan2x)1−(2tanx1−tan2x)2
=4tanx(1−tan2x)×(1−tan2x])2[(1−tan2x)2−4tan2x]
=4tanx[1−tan2x]1+tan4x−2tan2x−4tan2x
=4tanx[1−tan2x][1−6tan2x+tan4x]=R.H.S
LHS=RHS
∴tan4x=4tanx[1−tan2x][1−6tan2x+tan4x]