wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
((tan60+1)÷(tan601))2=(1+cos30)÷(1cos30)

Open in App
Solution

LHS: ((tan60+1)÷(tan601))2=(3+131)2
Taking the conjugate (√3 + 1) and multiply numerator and denominator
=((3+1×31)2×3+13+1)2
=((3+1)2(3)212)2
=(3+1+2331)2
=(4+232)2
=(2+3)2
=4+3+43
Thus, LHS=7+43
R.H.S=(1+cos30)÷(1cos30)
=1+32132
=2+323×2+32+3
=(2+3)222(3)2
=4+3+4343
Thus, R.H.S=7+43
Therefore, LHS=RHS
Hence, ((tan60+1)÷(tan601))2=(1+cos30)÷(1cos30)


flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon