Prove that :
((tan60+1)÷(tan60−1))2=(1+cos30)÷(1−cos30)
LHS: ((tan60+1)÷(tan60−1))2=(√3+1√3−1)2
Taking the conjugate (√3 + 1) and multiply numerator and denominator
=((√3+1×√3−1)2×√3+1√3+1)2
=((√3+1)2(√3)2−12)2
=(3+1+2√33−1)2
=(4+2√32)2
=(2+√3)2
=4+3+4√3
Thus, LHS=7+4√3
R.H.S=(1+cos30)÷(1−cos30)
=1+√321−√32
=2+√32−√3×2+√32+√3
=(2+√3)222−(√3)2
=4+3+4√34−3
Thus, R.H.S=7+4√3
Therefore, LHS=RHS
Hence, ((tan60+1)÷(tan60−1))2=(1+cos30)÷(1−cos30)