wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan 70=tan 20+2tan 50.
Or

Prove that 1+cos2x+cos4x+cos6x=4cosx cos2x cos3x

Open in App
Solution

We know that,

tan(AB)=tan Atan B1+tan A tan B

tan (7020)=tan 70tan 201+tan 70 tan 20 [A=70,B=20]

tan 50=tan 70tan 201+tan 70 cot 70 [tan 20=cot(9020)]

tan50=tan70tan201+1 [tan θ.cotθ=1]

2tan50=tan70tan20

tan70=tan20+2tan50

Or

We have,

LHS=(1+cos2x)+(cos4x+cos6x)

=2cos2x+2cos4x+6x2.cos4x6x2

=2cos2x+2cos5x.cosx [cos(θ)=cosθ]

[1+cos2x=2cos2x and cosx+cosy=2cos(x+y2cos(xy2))]

=2cosx(cosx+cos5x)=cosx(2cosx+5x2.cosx5x2)

=2cosx(2cos3x.cos2x)

=4cosxcos2xcos3x=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon