wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tan821/2=(3+2)(2+1)

Open in App
Solution

tan30=13
2tan151tan215=13 Let tan15=a
23a=1a2
a2+23a1=0
a=23±12+42(tan15>0)
tan15=23
2tan712°1tan2712°=23 Let tan712°=b
2b=(23)(1b2)
(23)b2+2b(23)=0
b=2+4+4(23)22(23)(tan712°>0)
=1+843(23)
tan712°=62123
tan8212°=cot712°=23621
=(23)(6+2+1)(6(2+1))(6+2+1)
=2632+226+236(2+1)2
=62+23322
=(21)(3+2)(21)2
=3+221=(3+2)(2+1)
tan8212°=(3+2)(2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon