wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
(tanA+cosecB)2(cotBsecA)2=2tanAcotB(cosecA+secB)

Open in App
Solution

We have,
LHS = (tanA+cosecB)2 (cotBsecA)2

LHS = (tan2A + cosec2B +2tanAcosecB)(cot2 B + sec2 A - 2cotBsecA)

LHS = (tan2A - sec2A )+(cosec2 B - cot2 B)+2tanAcosecB+2cotBsecA

LHS =1+1+2tanAcosecB+2cotBsecA

LHS =2(tanAcosecB+cotBsecA)

LHS = 2 tan A cot B (cosecBcotB+secAtanA) [Dividing and multiplying by tan A cot B]

LHS = 2 tan A cot B ⎪ ⎪ ⎪⎪ ⎪ ⎪1sinBcosBsinB+1cosAsinAocsA⎪ ⎪ ⎪⎪ ⎪ ⎪

LHS = 2 tan A cot B (1cosB+1sinA) =2tanAcotB(secB+cosecA)= RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon