wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
tanα+2tan2α+4tan4α+8cot8α=cotα

Open in App
Solution

tanα+2tan2α+4tanα+8cot8α=cotα

Let tanθ+2cot2θ

=sinθcosθ+2cos2θsin2θ

=sinθcosθ+2(12sin2θ)2sinθcosθ

=sin2θ+12sin2θsinθcosθ

=1sin2θsinθcosθ=cos2θsinθcosθ=cosθsinθ=cotθ

=tanα+2tan2α+4tan4α+8cot8α

=tanα+2tan2α+4(tan4α+2cot2(4α))

=tanα+2tan2α+4cot4α

=tanα+2(tan2α+2cot2(2α))

=tanα+2cot2α

=cotα=RHS.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon