tan11π3−2sin4π6−34cosec2π4+4cos217π6
=tan(3π+2π3)−2sin2π3−34(2)+4cos2(3π−π6)
=tan(2π3)−2sin(π−π3)−32+4cos2(π6)
=tan(π3)−2sin(π3)−32+4×34
=−√3−√3−32+3=3−4√32
Prove that:
(i)tan225∘cot405∘+tan765∘cot675∘=0
(ii)sin8π3cos23π6+cos13π3sin35π6=12
(iii)cos24∘+cos55∘+cos125∘+cos204∘+cos300∘=12
(iv)tan(−225∘)cot(−405∘)−tan(−765∘)cot(675∘)=0
(v)cos570∘sin510∘+sin(−330∘)cos(−390∘)=0
(vi)tan11π3−2sin4π6−34cosec2π4+4cos217π6=3−4√32
(vii)3sinπ6secπ3−4sin5π5cotπ4=1