Consider the L.H.S.
=tan[π4+12cos−1ab]+tan[π4−12cos−1ab]
Let θ=12cos−1ab …….. (1)
Therefore,
=tan[π4+θ]+tan[π4−θ]
We know that
tan(A+B)=tanA+tanB1−tanAtanB
Therefore,
=tanπ4+tanθ1−tanπ4tanθ+tanπ4−tanθ1+tanπ4tanθ
=1+tanθ1−tanθ+1−tanθ1+tanθ
=(1+tanθ)2+(1−tanθ)2(1−tanθ)(1+tanθ)
=1+tan2θ+2tanθ+1+tanθ−2tanθ(1−tan2θ)
=2(1+tan2θ)(1−tan2θ)
We know that
cos2θ=1−tan2θ1+tan2θ
Therefore,
=2cos2θ
From equation (1), we get
=2ab
=2ba
Hence, proved