Prove that:
tan(π4+θ)+tan(π4−θ)=2 sec 2θ
LHS =tan(π4+θ)+tan(π4−θ)
=tanπ4+tan θ1−tan π4 tan θ+tan π4−tan θ1+tan π4 tan θ=1+tan θ1−tan θ+1−tan θ1+tan θ [∵ tan π4=1]=(1+tan2 θ+2 tan θ)+(1+tan2 θ−2 tan θ)(1−tan θ)(1+tan θ)=2(1+tan2 θ)1−tan2 θ
=2 sec2 θ1−sin2 θcos2 θ [∵ sec2 θ=1+tan2 θ]=2 sec2 θ. cos2 θcos2 θ−sin2 θ [∵ sec=1cos θ]=2cos 2 θ=2 sec 2 θ=RHS