Prove that tan tan 4 θ=4 tan θ (1−tan2θ)1−6 tan2 θ+tan4 θ. Find the angle θϵ(0,π2), in which the given proof does not hold.
Or
Prove that cos4x+cos3x+cos2xsin4x+sin3x+sin2x = cot 3x . Do you think at x=π3, the given proof holds true?
We have, LHS = tan 4 θ = tan 2 (2 θ) = 2tan2θ1−tan22θ [∵ tan 2 θ=2 tan θ1−tan2 θ]
= 2(2 tan θ1−tan2 θ)1−(2 tan θ1−tan2 θ)2=4 tan θ1−tan2 θ(1−tan2θ)2−4tan2θ(1−tan2θ)2
= 4tanθ(1−tan2θ)(1−tan2θ)2−4tan2θ=4tanθ(1−tan2θ)1−6tan2θ+tan4θ=RHS Hence proved.
We know that tan θ is not defined at θ = π2
∴ tan 4 θ is not defined at θ = π8ϵ(0,π2)
Hence, given proof does not exist at θ = π8
Or
We have,
LHS = cos 4 x + cos 3 x +cos 2 xsin 4 x +sin 3 x + sin 2 x
=cos 4 x + cos 2 x + cos 3 xsin 4 x + sin 2 x + sin 3 x
=2cos(4x+2x2)cos(4x−2x2)+cos3x2sin(4x+2x2)cos(4x−2x2)+sin3x
[∵cos C + cos D = 2 cos (C+D2).cos(C−D2)and sin C + sin D = 2 sin (C+D2.).cos(C−D2)]
= 2 cos 3 x cos x+cos 3 x2 sin 3 x cos x + sin 3 x
= cos 3 x(2 cos x+1)sin 3x(2 cos x+1)=cos 3xsin 3x=cot3x=RHS
At x=π3, cot 3×π3=cotπ=∞. Hence, at x=π3 given proof does not hold true.