wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

tanθ(1-cotθ)+cotθ(1-tanθ)=1+tanθ+cotθ


Open in App
Solution

STEP 1 : Solving the Left Hand Side (LHS) of the equation

Taking the LHS and solving we get,

tanθ(1-cotθ)+cotθ(1-tanθ)

=tanθ1-1tanθ+1tanθ(1-tanθ)

=tanθtanθ-1tanθ+1tanθ(1-tanθ)

=tan2θtanθ-1+1tanθ(1-tanθ)

=tan2θtanθ-1-1tanθ(tanθ-1)

=tan3θ-1tanθtanθ-1

=tanθ-1tan2θ+tanθ+1tanθtanθ-1

=tan2θ+tanθ+1tanθ

=tan2θtanθ+tanθtanθ+1tanθ

=tanθ+1+cotθ

=1+tanθ+cotθ=RHS

i.e. tanθ(1-cotθ)+cotθ(1-tanθ)=1+tanθ+cotθ

Hence proved.


flag
Suggest Corrections
thumbs-up
113
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon