Prove that:
tanθ(1-cotθ)+cotθ(1-tanθ)=1+tanθ+cotθ
STEP 1 : Solving the Left Hand Side (LHS) of the equation
Taking the LHS and solving we get,
tanθ(1-cotθ)+cotθ(1-tanθ)
=tanθ1-1tanθ+1tanθ(1-tanθ)
=tanθtanθ-1tanθ+1tanθ(1-tanθ)
=tan2θtanθ-1+1tanθ(1-tanθ)
=tan2θtanθ-1-1tanθ(tanθ-1)
=tan3θ-1tanθtanθ-1
=tanθ-1tan2θ+tanθ+1tanθtanθ-1
=tan2θ+tanθ+1tanθ
=tan2θtanθ+tanθtanθ+1tanθ
=tanθ+1+cotθ
=1+tanθ+cotθ=RHS
i.e. tanθ(1-cotθ)+cotθ(1-tanθ)=1+tanθ+cotθ
Hence proved.
Prove that cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ