Prove that (tan θ+cot θ)2= _____________
sec2 θ+cosec2 θ
Consider L.H.S
(tan θ+cot θ)2
(a+b)2=a2+b2+2ab
=tan2 θ+cot2 θ+2 tan θ cot θ
=tan2 θ+cot2 θ+2(1) (∵cot θ=1tan θ)
=(sec2 θ−1)+(cosec2 θ−1)+2 (∵sec2 θ−1=tan2 θ)
=sec2 θ+cosec2 θ−2+2 (∵cosec2 θ−1=cot2 θ)
=sec2 θ+cosec2 θ