Prove that:
tanθ tan(60∘−θ) tan(60∘+θ)
We have,
LHS=tanθ tan(60∘−θ) tan(60∘+θ)=sinθ(60∘−θ)sin(60∘+θ)cosθ cos(60∘−θ)cos(60∘+θ)=2sinθ sin(60∘−θ)sin(60∘−θ)cosθ cos(60∘−θ)cos(60∘+θ)=sinθ[2sin(60∘−θ)sin(60∘+θ)]cosθ[2cos(60∘−θ)cos(60∘+θ)]=sinθ[cos{(60∘−θ)−(60∘+θ)}−cos{(60∘−θ)+(60∘+θ)}]cosθ[cos{(60∘−θ)+(60∘+θ)}]+[cos{(60∘−θ)−(60∘+θ)}]=sinθ[cosθ(−2θ∘)−cos120∘]cosθ[cos120∘+cos(−2θ∘)]=sinθ[cos2θ−cos120∘]cosθ[cos120∘+cos2θ] [∵cos(−θ)=cosθ]=sinθ[cos2θ+sin30∘]cos[cos(90∘+30∘)+cos2θ]=sinθ[cos2θ+sin30∘]cosθ[−sin30∘+cos2θ] [∵ cos is negative in IInd quadrant]
=sinθ[cos2θ+12]cos[−12+cos2θ]=sinθ cos2θ+12sinθ−12cosθ+cosθ cos2θ=sinθ cos2θ+12sinθcosθ cos2θ−12cosθ=12[2sinθ cos2θ]+12sinθ12[2cosθ cos2θ]−12cosθ=12[2sinθ cos2θ+sinθ]12[2cosθ cos2θ−cosθ]=[sin3θ+sin(−θ)+sinθ][cos3θ+cos)−θ]−cosθ=sin3θ−sinθ+sinθcos3θ+cosθ−cosθ[∵ sin(−θ)=−sinθ and cos(−θ)=cosθ]=sin3θcos3θ=tan3θ=RHS∴tanθ tan(60∘−θ)tan(60∘+θ)=tan3θ.