wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ+tan(θ+π3)+tan(θ+2π3)=3.

Open in App
Solution

tanπ3=3,tan2π3=tan(ππ3)
=tanπ3=3
Now tanθ+tan(θ+π3)+tan(θ+22π3)
=tanθ+tanθ+31(3)tanθ+tanθ31+(3)tanθ
=tanθ(13tan2θ)+(tanθ+3)(1+3tanθ)+(tanθ3)(13tanθ)13tan2θ
=tanθ3tan2θ+2tanθ+3(23tanθ)13tan2θ
=9tanθ3tan3θ13tan2θ
=3(3tanθtan3θ)13tan2θ=3tan3θ.
Hence the given equation reduces to 3tan3θ=3
tan3θ=1=tanπ4
3θ=nπ+π4
or θ=nπ3+π12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon