tanπ3=√3,tan2π3=tan(π−π3)
=−tanπ3=−√3
Now tanθ+tan(θ+π3)+tan(θ+22π3)
=tanθ+tanθ+√31−√(3)tanθ+tanθ−√31+√(3)tanθ
=tanθ(1−3tan2θ)+(tanθ+√3)(1+√3tanθ)+(tanθ−√3)(1−√3tanθ)1−3tan2θ
=tanθ−3tan2θ+2tanθ+√3(2√3tanθ)1−3tan2θ
=9tanθ−3tan3θ1−3tan2θ
=3⋅(3tanθ−tan3θ)1−3tan2θ=3tan3θ.
Hence the given equation reduces to 3tan3θ=3
∴tan3θ=1=tanπ4
∴3θ=nπ+π4
or θ=nπ3+π12