Prove that: tan-1x-tan-1y=tan-1x-y1+xy
Proof:
Let,tan-1x=α and tan-1y=β
Thus, we can say; x=tanα,y=tanβ
Now, we know that tan(α-β)=tanα-tanβ1+tanα.tanβ
i.e
tan(α-β)=x-y1+xy⇒(α-β)=tan-1x-y1+xy⇒tan-1x-tan-1y=tan-1x-y1+xy
Hence proved.
Prove that : tan-1x + tan -1y + tan-1z = pie/2