Consider the given function:
tan3x=3tanx−tan3x1−3tan2
L.H.Stan3x
=tan(2x+x)
=tan(2x)+tan(x)1−tan(2x)tan(x)
=2tanx1−tan2x+tanx1−2tanx1−tan2x.tanx
=2tanx1−tan2x+tanx1−2tanx1−tan2x.tanx∗1−tan21−tan2
=2tanx+tanx−tan3x1−tan2x−2tan2x
=3tanx−tan3x1−3tan2=R.H.S
Hence this is the answer.