Prove that:tanπ4+θ-tanπ4-θ=2tan2θ.
STEP 1 : Solving the Left Hand Side (LHS) of the equation
Taking the LHS and solving we get,
tanπ4+θ-tanπ4-θ
=tanπ4+tanθ1-tanπ4tanθ-tanπ4-tanθ1+tanπ4tanθ
=1+tanθ1-tanθ-1-tanθ1+tanθ
=1+tanθ2-1-tanθ21-tanθ1+tanθ
=12+tan2θ+2×tanθ-12+tan2θ-2×tanθ1-tan2θ
=1+tan2θ+2tanθ-1-tan2θ+2tanθ1-tan2θ
=4×tanθ1-tan2θ=22tanθ1-tan2θ
=2tan2θ=RHS
i.e. tanπ4+θ-tanπ4-θ=2tan2θ
Hence proved.
Prove that:
1+cos2 2θ=2(cos4θ+sin4θ)
cos2(π4−θ)−sin2 (π4−θ)=sin 2θ