Prove that cosθ+sin(270∘+θ)−sin(270∘−θ)+cos(180∘+θ)
= cosθ+sin(270∘+θ)−sin(270∘−θ)+cos(180∘+θ)
= cosθ+sin[180∘+(90∘+θ)]−sin[180∘+(90∘−θ)]+cos[180∘+θ]
= cosθ−sin[(90∘+θ)]+sin(90∘−θ)−cosθ
[∵sin(180∘+x)=−sinx,cos(180∘+x)=−cosx]
= cos θ−cos θ+cos θ−cos θ=0
= [∵sin(90∘+θ)=cosθ,sin(90∘−θ)]