1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
Prove that ...
Question
Prove that
cosec
6
θ
=
cot
6
θ
+
3
cot
2
θ
.
cosec
2
θ
+
1
Open in App
Solution
c
o
s
e
c
6
θ
=
(
c
o
s
e
c
2
θ
)
3
.
c
o
s
e
c
2
θ
=
c
o
t
2
θ
+
1
−
−
−
−
(
1
)
(
c
o
s
e
c
2
θ
)
3
=
(
c
o
t
2
θ
+
1
)
3
Since
(
x
+
y
)
3
=
x
3
+
y
3
+
3
x
y
(
x
+
y
)
,
we have
c
o
s
e
c
6
θ
=
(
c
o
t
2
θ
)
3
+
(
1
)
3
(
c
o
t
2
θ
)
(
1
)
(
c
o
t
2
θ
+
1
)
⇒
c
o
s
e
c
6
θ
=
c
o
t
6
θ
+
1
+
3.
c
o
t
2
.
c
o
s
e
c
2
θ
⇒
c
o
s
e
c
6
θ
=
c
o
t
6
θ
+
3.
c
o
t
2
c
o
s
e
c
2
θ
+
1
∴
L.H.S=R.H.S
Suggest Corrections
0
Similar questions
Q.
c
o
s
e
c
6
θ
−
c
o
t
6
θ
=
1
+
3
c
o
t
1
θ
+
3
c
o
t
4
θ
Q.
If
c
o
s
e
c
6
θ
−
cot
6
θ
=
a
cot
4
θ
+
b
cot
2
θ
+
c
then
a
+
b
+
c
=
?
Q.
Prove that:
csc
6
θ
=
cot
6
θ
+
3
cot
2
θ
csc
2
θ
+
1
Q.
Prove:
sec
6
θ
=
tan
6
θ
+
3
tan
2
θ
sec
2
θ
+
1
Q.
Prove the following trigonometric identities
cosec
6
θ = cot
6
θ + 3 cot
2
θ cosec
2
θ + 1