Prove that tan 4θ=4tan θ(1−tan2θ)1−6 tan2θ+tan4θ
We have
LHS = tan 4θ=tan 2(2θ)
=tan 2x, where x= 2θ
=2tan x1−tan2x=2tan 2θ1−tan2 2θ
=2×2tan θ(1−tan2 θ)1−(2tan θ1−tan2θ)2=4 tan θ(1−tan 2θ)(1−tan2θ)2 −4tan2θ
= 4tan θ(1−tan2θ)1−6tan2 θ+tan4 θ =RHS