Let
ΔABC be a right-angled triangle:
Let AB=h
and AC=x
By Pythagoras theorem,
AB=√h2−x21
Area (ΔABC)=12×Base×Height
A=12x√h2−x2
Differentiating wrt X, we get -
dAdx=12√h2−x2+x2((−2x)2√h2−x2) [By chain rule]
=12(h2−x2−x2√h2−x2)=12(h2−2x2√h2−x2)
To maximum the area, we put dAdx=0
⇒12(h2−2x2√h2−2x2)=0
⇒x=h√2
Area is maximum if & only if d2Adx2 at x=h√2 is negative
So, d2Adx2=12⎡⎢
⎢
⎢⎣√h2−x2(−4x)−(h2−2x2)12(h2−x2)−1/2(−2x)(h2−x2)⎤⎥
⎥
⎥⎦ [product rule]
=12[−4x√h2−x2+x(h2−h2)(h2−x2)3/2]
d2Adx2=12⎡⎢
⎢
⎢
⎢
⎢⎣−4/h√2√h2−h22+h√h(h2−h2)(h2−h22)3/2⎤⎥
⎥
⎥
⎥
⎥⎦
=12[−4+0]=−2<0
∴ area is maximum when x=h√2
Base =√h2−x2=√h2−h22=h√2
∴ΔABC= Isosceles triangle