Prove that the area of the parallelogram, the equations of whose sides are a1x+b1y+c1=0,a1x+b1y+d1=0 a2x+b2y+c2=0,a2x+b2y+d2=0 is (d1−c1)(d2−c2)a1b2−a2b1
Open in App
Solution
p1=d1−c1√(a21+b21),p2=d2−c2√(a22+b22) Also sinθ=a1b2−a2b1√(a21+b21)√(a22+b22) Area of parallelogram p1−p2sinθ=(c1−d2)(c1−d2)a1b2−a2b1 Note: If these lines enclose a rhombus, then p1=p2 ∴(c1−d2)(a22+b22)=(c2−d2)(a21+b21).