y2=4ax2yy′=4a⇒y′=2ay
So for (xn,yn) tangent is
y−yn=2ayn(x−xn)
yyn−yn2=2ax−2axn
yyn−4axn=2ax−2axn
yyn=2ax+2axn
yyn=2axyn22
So, yy1=2axy122,yy2=2axy222,yy3=2axy322
Intersection of (1) and (2) is y(y1−y2)=y122−y222
y=y1+y22
So, 2ax=y1+y22×y1−y122
=y1y22
x=y1y24a
So, intersection of (1) and (2) is (y1y24a,y1+y22)
So, Area=∣∣∣Y1−Y2X1−X2Y2−Y3X2−X3∣∣∣
=∣∣
∣
∣
∣∣y2+y32−y1+y32y2y34a−y1y34ay1+y32−y1+y22y1y34a−y1y24a∣∣
∣
∣
∣∣
=∣∣
∣
∣
∣∣y2−y12y3(y2−y1)4ay3−y22y1(y3−y2)4a∣∣
∣
∣
∣∣
=∣∣∣y14a(y2−y1)(y3−y2)−y34a(y2−y1)(y3−y2)∣∣∣
=14a|(y1−y3)(y2−y1)(y3−y2)|