wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the areas of two similar triangles are in the ratio of the squares of their corresponding: [4 MARKS]
(i) altitudes
(ii) Medians
(iii) Angle bisector segments

Open in App
Solution

Application of theorems: 2 Marks
Calculation: 2 Marks
​​​​​​​



(i) Proof:ar(ΔABC)ar(ΔPQR=12×BC×AM12×QR×PN=BCQR×AMPNNow,B=Q[ΔABCΔPQR] 1=2[Each 90]ΔABMΔPQN[AA similarity]ABPQ=BMQN=AMPN(ii)Also,ABPQ=BCQR=ACPR(iii) [ΔABCΔPQR]
From (ii) and (iii), BCQR=AMPN
From(i), ar(ΔABC)ar(ΔPQR)=AM2PN2



(ii) Prrof:We haveABPQ=BCQR=ACPR[Triangles are similar](i)ABPQ2BD2QM=ABPQ=BDQM{ AD and PM are medians BC=2BD and QR=2QMandB=QΔABDΔPQM[AA similarity]ABPQ=BLQM=ALPMar(ΔABC)ar(ΔPQR)=AB2PQ2=AL2PM2


(iii) Prrof:We haveA=P[ΔABCΔPQR]12A=12P1=2andB=QΔABLΔPQMABPQ=BLQM=ALPMar(ΔABC)ar(Δ[PQR])=AB2PQ2=AL2PM2




flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon