Prove that the areas of two similar triangles are in the ratio of the squares of their corresponding: [4 MARKS] (i) altitudes (ii) Medians (iii) Angle bisector segments
Open in App
Solution
Application of theorems: 2 Marks Calculation: 2 Marks
(i)Proof:ar(ΔABC)ar(ΔPQR=12×BC×AM12×QR×PN=BCQR×AMPNNow,∠B=∠Q[ΔABC∼ΔPQR]∠1=∠2[Each90∘]∴ΔABM≅ΔPQN[AAsimilarity]∴ABPQ=BMQN=AMPN…(ii)Also,ABPQ=BCQR=ACPR…(iii)[ΔABC∼ΔPQR] From (ii) and (iii), BCQR=AMPN From(i), ar(ΔABC)ar(ΔPQR)=AM2PN2