Let
AB and
CD be straight lines intersecting at
O.
Also, let OX be the bisector of ∠AOC and OY be the bisector of ∠BOD
OY is the bisector of ∠BOD
∴ ∠1=∠6....(i)
OX is the bisector of ∠AOC
∴ ∠3=∠4.....(ii)
∠2 and ∠5 are vertically opposite angles.
∴ ∠2=∠5.....(iii)
We know that, sum of all angles =360o
∴ ∠1+∠2+∠3+∠4+∠5+∠6=360o
Using the relations from (i), (ii) and (iii), we get:
∠1+∠2+∠3+∠3+∠2+∠1=360o
2∠1+2∠2+2∠3=360o
⇒∠DOY+∠AOD+∠AOX=180o
But, ∠DOY+∠AOD+∠AOX=∠XOY
∴ ∠XOY=180o
Since, ∠XOY=180o, both OX and OY are on the same straight line.[Hence proved]